ASRS CALLBACK includes excerpts from ASRS incident reports with supporting commentary. In addition, CALLBACK may contain summaries of ASRS research studies and related aviation safety information. CALLBACK is one of the ASRS's most effective tools for improving the quality of human performance in the National Aviation System (NAS) at the grass roots level.

Friday, July 14, 2017

CALLBACK 450 - July 2017


CALLBACK From the NASA Aviation Safety Reporting System
Issue 450
July 2017
Windshear Woes Beget Wisdom
The windshear saga in American aviation history reveals a complex and costly past. Windshear has existed for as long as aviators have taken to the skies and is largely responsible for several classic aviation losses. Notable U.S. aviation accidents include Eastern Flight 66 (1975), Pan American Flight 759 (1982), and Delta Flight 191 (1985).

Windshear remained unrecognized for years. It was not clearly understood until swept wing, jet aircraft encountered the phenomenon. Since 1975, windshear has been researched and studied, measured, defined, catalogued, and rightly vilified. Technology has been developed to identify and minimize the threats that it poses. Procedures have been implemented to aid pilots who experience windshear in flight and flight crews invest hours of simulator training practicing windshear escape maneuvers.

Even with progress to date, windshear continues to be a worthy adversary to aviation professionals. It requires respect and wisdom to defeat. Pilots often must make decisions regarding known or anticipated windshear, and the best practice is always avoidance.

This month, CALLBACK shares reported incidents that reveal some means and extremes of windshear experienced in modern aviation. Lessons to be gleaned are ripe, rich, and many.
Teasing a Toronto Tailwind
After encountering windshear that resulted in an unstabilized approach, this A319 Captain elected to continue to a landing. He noted his awareness of the current winds and trends as well as his personal preparedness to go around as reasons for continuing the approach.
After being delayed due to low ceilings in Toronto, we were finally descending…in heavy rain and moderate turbulence with clearance to 7,000 feet MSL. After a third 360 degree turn, we were…transferred to the Final Controller and proceeded inbound for the ILS RWY 05. The last several ATIS [reports] showed winds at approximately 090 to 100 [degrees] at 5 to 10 knots, and the Final Controller mentioned the same with an RVR of 6,000 plus feet for Runway 05. When cleared for the approach, we were at 3,000 feet MSL to intercept the glideslope, and I noticed the winds had picked up to a 50 knot direct tailwind. The First Officer was flying. We were assigned 160 knots and began to configure at approximately 2,000 feet AGL. At 1,500 feet the wind was a 30 knot direct tailwind and we had flaps 3. Indicated airspeed (IAS) had increased at this point [with] thrust at idle to 170-175 knots, prohibiting final flaps just yet. The First Officer did a great job aggressively trying to slow the aircraft, as we were concerned about getting a flaps 3 overspeed. As I knew from the ATIS and the Controllers (Tower now), the winds were to die off very soon to less than 10 knots. [Below] 1,000 feet we were just getting the airspeed to put in final flaps (full) and were finally stabilized and on speed between 500 to 800 feet. The winds were now at the reported 090 [degrees] at 8 knots or so [below] 500 feet. The total wind shift was approximately 90 degrees from direct tailwind to a right crosswind - losing 40 knots [of tailwind] in the space of 1,500 feet or so. The reasons I elected to continue the approach were:
1. [I knew] about the wind shift and decrease [in tailwind] as reported on the ATIS and from ATC.
2. [I saw] a positive trend in the wind.
3. [I was] prepared for the missed approach (at 500 feet) IF the winds and IAS stayed as they were earlier in the approach.
We landed uneventfully in the touchdown zone and on speed…after breaking out before minimums.
Up and Down into Salt Lake City
While being vectored for an approach, this light twin transport Pilot encountered a vertical windshear that dramatically demonstrated the intensity, danger, and potential traffic conflict that a challenging vertical shear can present.
We had lined up for the ILS RWY 3 at Ogden, but at glideslope intercept, the weather had [deteriorated] to ¼ mile visibility and a 400 foot ceiling. We broke off the approach,…requested an approach to land at Salt Lake City, and were vectored to the ILS RWY 34L. Approximately 10 miles downwind in solid IMC [with the] autopilot and altitude hold on and about to turn base, we hit a downdraft that dropped us approximately 2,000 feet. The horizon ball was all brown, the autopilot and altitude [hold function] were ineffective, the loss of control set off the master warning system due to lack of fuel (at the time we had 750 pounds per side), and the terrain warning went off. Recovery was accomplished, but with a 2,000 foot gain (assigned altitude [had been] 10,000 feet; at the floor of the incident [the altitude was] approximately 8,000 feet; at the ceiling of incident [the altitude was] approximately 12,000 feet). I was then routed back to the west and north on vectors for sequencing back to the ILS RWY 34L at Salt Lake City that was shot with a side-step on final in VFR conditions to RWY 34R.
Shearing Situational Awareness
This Air Carrier Captain accomplished a successful windshear recovery while on final approach. He was surprised by the quickly changing environment and challenged by his diminished awareness as a result.
We were on final for Runway 8R in Houston and encountered windshear.… Tower started calling an approach wind loss of 20 knots that increased to 25 knots at a 3 mile final. The Copilot and I were discussing what constituted a microburst alert, which was 30 knots, so we elected to continue the approach. We were in moderate turbulence and the wind was currently a right quartering tailwind which would switch to a left crosswind on the runway. I asked the Copilot to increase our target speed to plus 20, which he did, and as we approached the outer marker, we were fully configured and on speed. At approximately 1,400 feet AGL, we received a “MONITOR RADAR DISPLAY.” I saw that the indication was ahead of us to the right of our course. Since we were still stable and fully configured [with the] autopilot and autothrottles on, we elected to continue.

Shortly we received the call, “GO AROUND, WINDSHEAR AHEAD.” I initiated the go-around and asked for flaps 15 and gear up. Very shortly after this, we received the call, “WINDSHEAR, WINDSHEAR, WINDSHEAR.” At that point I pushed the throttles to the stops, verified the spoilers were stowed, and selected Takeoff Go-Around (TOGA) again. The First Officer called ATC and said we were going around. I was so focused on flying the plane with regards to Radio Altimeter (RA) and trend, and verifying I was doing everything correctly, I did not hear what ATC replied back to us. Adding to the workload and task saturation was the plane on Runway 8L, which also went around, and then the two planes behind us on Runways 8L and 8R also went around.

The Copilot advised that ATC said to level off at 2,000 feet as we were passing through 2,000 feet with a high climb rate. I still had “WINDSHEAR” displayed on my ADI, and I told him I was not going to level off. He then had to try to talk to ATC again to get a new altitude. They gave us 3,000 feet. We were climbing rapidly, and I brought the throttles back to level off at 3,000 feet, but overshot it to approximately 3,200 feet and descended back to 3,000 feet. The landing gear horn immediately began to sound when I pulled the power back since we still had flaps 15. I made sure we were above flaps 15 retraction speed, and we completed a normal go-around at that point to clean maneuvering speed.

Everything happened so fast. ATC should not give a level off altitude of 2,000 feet since I now know it is possible to still be in windshear…at that altitude. If I were to fly this approach again, I would elect to abort the approach and wait for tower to stop calling a 20-25 knot loss at a 3 mile final.… We thought that since the planes ahead of us were landing, we would be able to [as well]. Obviously there is always a first flight that cannot land, and on this day, that was us.
The Final Authority — 14 CFR 91.3
This heavy transport Captain perceived a subtle suggestion to take off when weather that may have presented a windshear hazard was nearby. He exercised his authority with seasoned wisdom and sound judgment when he opted not to leverage the safety of his aircraft or crew.
As we were taxiing west on Runway 27, we could see a radar return of a strong storm which was depicted red on our screen. The storm was directly west of the…airport and appeared to be moving east toward us. As we turned south on Taxiway N, we could only see part of the storm to our right on the radar display. When we switched frequencies to Tower, we heard that there was windshear on a two mile final for our runway. As we approached the runway, we advised Tower that we would not take off. Tower reminded us that the windshear was two miles in the opposite direction from where we would be heading. It seemed like the cell was directly over the field at that time, possibly centered a little north.… The FOM guides us not to get within 5 miles of a cell below FL200. Tower instructed us to taxi out of the way so that several other aircraft could take off while we waited a few minutes for the storm to pass.

I feel that Tower was more concerned about getting airplanes on their way than waiting a few minutes until it was safe. I also think [there is an] air carrier culture pressure to get the job done even if there is an increased risk.

When one aircraft decides it is not safe to take off, perhaps Tower should inform the following aircraft that might not have been on frequency to get the same information. Although several aircraft took off away from the storm, they faced the possibility of getting a decreasing performance windshear on takeoff.
Check Out
ASRS Safety Topics!
ASRS Database Report Sets each consist of 50 de-identified ASRS Database records relevant to topics of interest to the aviation community.  View/Download Report Sets »
CALLBACK Issue 450
 Download PDF & Print
 View HTML
ASRS Online Resources
 CALLBACK Previous Issues
 Report to ASRS
 Search ASRS Database
 ASRS Homepage
Subscribe to CALLBACK for FREE!
Forward to a Friend
Contact the Editor
Special Studies
Meteorlogical and Aeronautical Information Services Data Link and Application Study
ASRS, in cooperation with the FAA, is gathering reports of incidents that occurred while pilots were utilizing weather or AIS information in the cockpit obtained via data link on the ground or in the air. Learn more » Read the Interim Report »
Wake Vortex Encounter Study
In cooperation with the FAA, ASRS is conducting an ongoing study on wake vortex incidents, enroute and terminal, that occurred within the United States. Learn more »
May 2017
Report Intake:
Air Carrier/Air Taxi Pilots 5,625
General Aviation Pilots 1,388
Controllers 682
Flight Attendants 428
Military/Other 396
Mechanics 220
Dispatchers 174
TOTAL 8,913
ASRS Alerts Issued:
Subject No. of Alerts
Aircraft or Aircraft Equipment 2
Airport Facility or Procedure 1
ATC Equipment or Procedure 6
TOTAL 9
Subscribe to CALLBACK for FREE!
Forward to a Friend
Contact the Editor
NOTE TO READERS:     Indicates an ASRS report narrative    [   ]  Indicates clarification made by ASRS
A Monthly Safety Newsletter from The Office of the NASA Aviation Safety Reporting System
Issue 450


NASA Aviation Safety Reporting System | P.O. Box 189 | Moffett Field | CA | 94035-0189

CALLBACK 449 - June 2017


CALLBACK From the NASA Aviation Safety Reporting System
Issue 449
June 2017
Metroplex Mystique
The FAA is striving to improve efficiency in the National Airspace System (NAS) by increasing capabilities in 12 active or completed Metroplexes. A Metroplex is a metropolitan area that includes one or more commercial airports with complex, shared airspace and serves at least one major city. Potential benefits include reduced fuel burns, fewer aircraft exhaust emissions, and improved on-time performance.1

The Optimized Profile Descent (OPD), the Optimization of Airspace and Procedures in the Metroplex (OAPM), and Time Based Flow Management (TBFM) are important pieces of the Metroplex concept. Operational problems that occur in Metroplex areas are not unique to Metroplex environments nor attributable to Metroplex mystique. Threats experienced in Metroplex areas result from complex interactions and forces at play when optimizing airspace, time, and aircraft operations. Some threats are exclusive to the Metroplex environment and relate directly to a piece of the Metroplex concept. Most threats are not limited strictly to the Metroplex environment, but they are intensified by the higher traffic density. ASRS reported incidents citing Metroplex issues reveal that the usual suspects are involved when considering related factors such as degraded communication, misunderstanding, lack of procedural knowledge, and poor execution.

This month CALLBACK offers a sample of reported Metroplex incidents from Pilot and Controller points of view. Resulting complications include traffic compression, aircraft separation, vectors for spacing, airspace violations, potential airborne conflicts, and airspeed reassignments that result in unachievable altitude restrictions.
Sweet Separation
After receiving clearance for a visual approach, a Challenger Jet Captain was drawn into a compromising position. The incident illustrates a looming concern as Airport Acceptance Rates (AAR’s) and Airport Departure Rates (ADR’s) are increased within a Metroplex.
South of Avenal, ATC [vectored] a heavy B747 1,000 feet above us, sequencing us behind them for Runway 24L with repeated cautions for wake turbulence. Both aircraft were instructed to fly heading 065 after Santa Monica, which puts them on a downwind for Runway 24L. The B747 had made the turn to final when ATC asked us if we had a visual on the B747. We acknowledged that we did and were cleared for the visual. At that point, separation from terrain and other aircraft is now my responsibility. We set up for a squared off base to final turn to maximize wake turbulence separation from the heavy B747. Before we intercepted the final approach course, the Final Controller issued us a heading of 230 degrees. This shortened our turn to final and reduced our separation from the B747. After the B747 touched down, Tower cleared a Super A380 into position on Runway 24L and then subsequently cleared him for takeoff. We had minimum traffic separation from that aircraft and zero wake turbulence separation. A follow-up call to the Tower revealed that although ATC has guidelines of 5 miles minimum separation between departing aircraft and the same standard for arriving aircraft, there is no standard separation between a departing aircraft and an arriving aircraft.
Waking Up During the Descent
This C560XL Captain was a bit upset when he encountered the wake of another aircraft. The two aircraft were descending within a Metroplex on different STARs that serve different airports, share common waypoints, and provide guidance to aircraft whose weights could differ by two orders of magnitude.
While flying the FERN5 arrival into Santa Monica, descending thru FL370, we experienced severe wake turbulence from another aircraft in front of us. I believe [the aircraft was] a Super A380, on the SADDE6 arrival to Los Angeles. The event took place between REBRG and DERBB intersections with ATC reporting that the Super A380 was 15 nautical miles ahead of us and descending. The aircraft upset was an abrupt negative g’s, followed immediately by a right roll to 90+ degrees.… I quickly brought the plane back to a level attitude, assessed passenger injuries, aircraft control in approach/landing configurations, and whether any structural damage [had occurred]. [There were] no serious injuries, and aircraft integrity was verified. We continued to our destination due to close proximity of all diverts (Van Nuys, Burbank, and Los Angeles). We [advised ATC of a medical issue with a passenger], and as a precaution, to have the passenger checked out by medical personnel upon arrival.… The FERN5 and SADDE6 [arrivals] converge and share fixes DERBB, REYES and FILLMORE. No altitude restrictions exist [at these three fixes] on either arrival. The FERN5 is tailored for smaller General Aviation (GA) aircraft and the SADDE6 tends to be for larger commercial aircraft. These two arrivals should not converge or share fixes, and [they should] have altitude crossing restrictions. ATC should also be aware of these conflicts and not allow Heavies [and] Supers to be descending thru this airspace [without] much, much greater lateral and vertical separation.
“Control the Ball” – V. Lombardi
An Approach Controller experienced unpredictable compression and inadequate spacing that resulted from new procedures and an OPD serving the Atlanta Metroplex. He offers his analysis, rationale, and solution.
While assisting another Controller on the combined TAR-D/L position, four arrivals were inbound from the northeast, two on the WINNG arrival and two on the PECHY arrival. All aircraft needed to be blended in order to fit on the base leg for Runway 26R. Aircraft X, the lead aircraft on the PECHY arrival, was followed by Aircraft Y, also on the PECHY arrival. The spacing provided by Center was more than the required 5 miles, but due to the overtake created by the fact that arrivals cross the airspace boundary at 280 knots “descending via” the arrival procedure, this spacing rapidly collapsed to less than 5 miles. To mitigate the situation, the Controller issued Aircraft Y 210 knots to increase spacing enough to give the Final Controller something to work with. Aircraft Y immediately responded that they would no longer be able to meet their altitude restrictions if they slowed, which would, in turn, result in an airspace violation of satellite and departure airspace.

It is unacceptable to get aircraft at 280 knots on the base leg, with unpredictable compression (there is a 15 mile window in which the Pilot can slow to 250 knots), especially when two base leg feeds are routinely fed to the same runway. Many times it is inappropriate to feed the Final Controller at a speed greater than 210 knots (our facility standard operating procedures specifically state that the final should not normally be fed at speeds greater than 210 knots), and aircraft “descending via” are unable to make altitude restrictions if slowed beyond the 280/250 knot restrictions on the Optimum Profile Descent arrival procedures.

[We should] terminate the OPD procedures at [our airspace] boundary and have all aircraft level at hard altitudes and in trail at 250 knots, especially when feeding dual base legs. The OPD is manageable in a single stream scenario, but we are being fed dual stream OPD arrivals from the northeast and the northwest. This complexity…creates a huge safety risk. Simply slowing an aircraft to 210 knots to comply with our SOP results in the aircraft not being able to meet crossing restrictions, [which then] results in multiple airspace violations.… The dual arrivals are routinely blended into a single base leg feed, requiring additional speed control and vectors. This procedure is not acceptable.
Old Habits Die Hard
An unexpected pilot route deviation prompted this Controller to issue a new “direct to” and “descend via” clearance. All seemed in order until the Controller remembered that the new OPD STAR is not what it used to be.
Center cleared this aircraft direct SMOOV and failed to enter it into Enroute Automation Modernization (ERAM) (ERAM showed the aircraft routed over the HOWRR transition for the SMOOV arrival). I eventually noticed that the aircraft was not flying the route I expected it to fly, and that’s when I had to figure out how to clear him back onto the route and issue a “descend via” clearance. So I [cleared] him direct SMOOV and issued the “descend via” clearance, but I had forgotten that the crossing restriction for SMOOV is at or above 10,000 feet. It had been 12,000 feet for ages before these new Optimal Profile Descent arrivals. The aircraft descended early down to 10,000 feet into A80 (Atlanta) Macon sector’s airspace before crossing the boundary for the new shelf which has been set aside for this descent. There was no loss of separation or conflict.

[At or above] 10,000 feet at Transfer of Control Point (TCP) SMOOV is a terrible design. It dramatically increases complexity and Controller phraseology in any situation where an aircraft isn’t flying the entire arrival as published. Today, it was because a prior Controller in Jacksonville ARTCC cleared the aircraft direct SMOOV even though they’re not supposed to. During thunderstorm season, there will be many times when aircraft will be deviating off of the published route for the STAR. The TCP, SMOOV, should be changed to at or above 11,000 feet, at the very least, thus totally eliminating any risk of an aircraft descending too soon into approach airspace without excessive verbiage from the Controller.
Check Out
ASRS Safety Topics!
ASRS Database Report Sets each consist of 50 de-identified ASRS Database records relevant to topics of interest to the aviation community.  View/Download Report Sets »
CALLBACK Issue 449
 Download PDF & Print
 View HTML
ASRS Online Resources
 CALLBACK Previous Issues
 Report to ASRS
 Search ASRS Database
 ASRS Homepage
Subscribe to CALLBACK for FREE!
Forward to a Friend
Contact the Editor
Special Studies
Meteorlogical and Aeronautical Information Services Data Link and Application Study
ASRS, in cooperation with the FAA, is gathering reports of incidents that occurred while pilots were utilizing weather or AIS information in the cockpit obtained via data link on the ground or in the air. Learn more » Read the Interim Report »
Wake Vortex Encounter Study
In cooperation with the FAA, ASRS is conducting an ongoing study on wake vortex incidents, enroute and terminal, that occurred within the United States. Learn more »
April 2017
Report Intake:
Air Carrier/Air Taxi Pilots 4,703
General Aviation Pilots 1,156
Controllers 566
Flight Attendants 365
Military/Other 335
Mechanics 179
Dispatchers 151
TOTAL 7,455
ASRS Alerts Issued:
Subject No. of Alerts
Airport Facility or Procedure 1
ATC Equipment or Procedure 1
Company Policy 1
TOTAL 3
Subscribe to CALLBACK for FREE!
Forward to a Friend
Contact the Editor
NOTE TO READERS:     Indicates an ASRS report narrative    [   ]  Indicates clarification made by ASRS
A Monthly Safety Newsletter from The Office of the NASA Aviation Safety Reporting System
Issue 449



NASA Aviation Safety Reporting System | P.O. Box 189 | Moffett Field | CA | 94035-0189

Blog Archive